Search results for "Silica deposition"

showing 3 items of 3 documents

Histochemical and electron microscopic analysis of spiculogenesis in the demosponge Suberites domuncula.

2006

The skeleton of demosponges is built of spicules consisting of biosilica. Using the primmorph system from Suberites domuncula, we demonstrate that silicatein, the biosilica-synthesizing enzyme, and silicase, the catabolic enzyme, are colocalized at the surface of growing spicules as well as in the axial filament located in the axial canal. It is assumed that these two enzymes are responsible for the deposition of biosilica. In search of additional potential structural molecules that might guide the mineralization process during spiculogenesis to species-specific spicules, electron microscopic studies with antibodies against galectin and silicatein were performed. These studies showed that …

HistologybiologyHistocytochemistryGalectinsMolecular Sequence DataFlagellumbiology.organism_classificationSilicon DioxideMineralization (biology)CathepsinsMicrobiologySilica depositionSuberites domunculaMicroscopy ElectronDemospongeSponge spiculeBiophysicsAnimalsAmino Acid SequenceCollagenAnatomySuberitesElectron microscopicGalectinThe journal of histochemistry and cytochemistry : official journal of the Histochemistry Society
researchProduct

Bioinspired synthesis of multifunctional inorganic and bio-organic hybrid materials

2012

Owing to their physical and chemical properties, inorganic functional materials have tremendous impacts on key technologies such as energy generation and storage, information, medicine, and automotive engineering. Nature, on the other hand, provides evolution-optimized processes, which lead to multifunctional inorganic–bio-organic materials with complex structures. Their formation occurs under physiological conditions, and is goverened by a combination of highly regulated biological processes and intrinsic chemical properties. Nevertheless, insights into the molecular mechanisms of biomineralization open up promising perspectives for bioinspired and biomimetic design and the development of …

Marine spongesChemistryBiomimetic designNanotechnologySkeletal structuresCell BiologyHybrid materialMolecular BiologyBiochemistrySilica depositionBiomineralizationFEBS Journal
researchProduct

Circumferential spicule growth by pericellular silica deposition in the hexactinellid sponge Monorhaphis chuni.

2011

SUMMARY The giant basal spicule of the hexactinellid sponge Monorhaphis chuni represents the longest natural siliceous structure on Earth. This spicule is composed of concentrically arranged lamellae that are approximately 10 μm thick. In the present study, we investigated the formation of outer lamellae on a cellular level using microscopic and spectroscopic techniques. It is shown that the formation of an outermost lamella begins with the association of cell clusters with the surface of the thickening and/or growing spicule. The cells release silica for controlled formation of a lamella. The pericellular (silica) material fuses to a delimited and textured layer of silica with depressions …

SpiculePhysiologyMineralogy02 engineering and technologyAquatic Science03 medical and health sciencesAnimalsComposite materialMolecular BiologyEcology Evolution Behavior and Systematics030304 developmental biology0303 health sciencesbiologyMonorhaphisHexactinellidSpectrometry X-Ray Emission021001 nanoscience & nanotechnologybiology.organism_classificationSilicon DioxideSilica depositionPoriferaSpongeLamella (surface anatomy)Insect ScienceAnimal Science and ZoologyThickening0210 nano-technologyLayer (electronics)The Journal of experimental biology
researchProduct